Displaying similar documents to “Les mesures vectorielles à valeurs dans L 0 sont bornées”

Densité et dimension

Patrick Assouad (1983)

Annales de l'institut Fourier

Similarity:

Une partie 𝒮 de 2 X est appelée une classe de Vapnik-Cervonenkis si la croissance de la fonction Δ 𝒮 : r Sup { | A | | A X , | A | = r } est polynomiale; ces classes se trouvent être utiles en Statistique et en Calcul des Probabilités (voir par exemple Vapnik, Cervonenkis [V.N. Vapnik, A.YA. Cervonenkis, Theor. Prob. Appl., 16 (1971), 264-280], Dudley [R.M. Dudley, Ann. of Prob., 6 (1978), 899-929]). Le présent travail est un essai de synthèse sur les classes de Vapnik-Cervonenkis. Mais il contient aussi beaucoup...

Sur certains espaces de formes linéaires liés aux mesures vectorielles

D. Bucchioni, André Goldman (1976)

Annales de l'institut Fourier

Similarity:

En liaison avec le théorème d’Orlicz-Pettis, on étudie la plus fine topologie localement convexe T 1 sur un elc E pour laquelle toute mesure définie sur une tribu et à valeurs dans E est T 1 -bornée. Pour cela, on considère l’espace G 1 ' des formes linéaires x ' sur E telles que, pour toute suite ( x n ) sous-série convergente de E , on ait Σ | x n , x ' | < + . La topologie T 1 coïncide avec la topologie de Mackey τ ( E , G 1 ' )  ; elle est bornologique et tonnelée, mais ce n’est pas la topologie bornologique et tonnelée associée à E ....