Displaying similar documents to “Difféomorphismes pseudo-Anosov et automorphismes symplectiques de l'homologie”

Holonomie et cycle évanouissant

Guy Wallet (1981)

Annales de l'institut Fourier

Similarity:

On démontre que l’holonomie est non triviale au voisinage d’un cycle évanouissant au moyen d’un critère d’Imanishi et on donne une démonstration non standard de ce dernier.

Prolongement des homotopies, Q -variétés et cycles tangents

Gaël Meigniez (1997)

Annales de l'institut Fourier

Similarity:

Nous montrons que le prolongement des homotopies, propriété de certains feuilletages étudiée par Godbillon, équivaut à la réunion de trois conditions indépendantes : la condition Q de Barre, qui est transverse ; la trivialité des cycles évanouissants de toutes dimensions, et la trivialité des cycles apparents de toutes dimensions. On établit que pour les feuilletages riemanniens et pour les feuilletages géodésibles, la propriété Q équivaut à l’absence d’holonomie. Ces résultats sont...

Déformations de flots d'Anosov et de groupes fuchsiens

Étienne Ghys (1992)

Annales de l'institut Fourier

Similarity:

Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe C . Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.

Sur l'invariance topologique de la classe de Godbillon-Vey

Étienne Ghys (1987)

Annales de l'institut Fourier

Similarity:

L’invariant de Godbillon-Vey, classiquement défini pour les feuilletages de classe C 2 , peut aussi se définir pour les feuilletages de classe C 2 par morceaux. Nous montrons que, dans cette catégorie étendue, l’invariant de Godbillon-Vey n’est pas invariant par conjugaison topologique.