Displaying similar documents to “On the existence of minimal hyperspheres in compact symmetric spaces”

Spectral localization, power boundedness and invariant subspaces under Ritt's type condition

Yu. Lyubich (1999)

Studia Mathematica

Similarity:

For a bounded linear operator T in a Banach space the Ritt resolvent condition R λ ( T ) C / | λ - 1 | (|λ| > 1) can be extended (changing the constant C) to any sector |arg(λ - 1)| ≤ π - δ, a r c c o s ( C - 1 ) < δ < π / 2 . This implies the power boundedness of the operator T. A key result is that the spectrum σ(T) is contained in a special convex closed domain. A generalized Ritt condition leads to a similar localization result and then to a theorem on invariant subspaces.

On a certain map of a triangle

Grzegorz Świrszcz (1998)

Fundamenta Mathematicae

Similarity:

The paper answers some questions asked by Sharkovski concerning the map F:(u,v) ↦ (u(4-u-v),uv) of the triangle Δ = u,v ≥ 0: u+v ≤ 4. We construct an absolutely continuous σ-finite invariant measure for F. We also prove the following strange phenomenon. The preimages of side I = Δ ∩ v=0 form a dense subset F - n ( I ) of Δ and there is another dense set Λ consisting of points whose orbits approach the interval I but are not attracted by I.

Rough maximal functions and rough singular integral operators applied to integrable radial functions.

Peter Sjögren, Fernando Soria (1997)

Revista Matemática Iberoamericana

Similarity:

Let Ω be homogeneous of degree 0 in R and integrable on the unit sphere. A rough maximal operator is obtained by inserting a factor Ω in the definition of the ordinary maximal function. Rough singular integral operators are given by principal value kernels Ω(y) / |y|, provided that the mean value of Ω vanishes. In an earlier paper, the authors showed that a two-dimensional rough maximal operator is of weak type (1,1) when restricted to radial functions. This result is now extended to...