Sur les variétés localement affines et localement projectives
Jean-Paul Benzécri (1960)
Bulletin de la Société Mathématique de France
Similarity:
Jean-Paul Benzécri (1960)
Bulletin de la Société Mathématique de France
Similarity:
M. Ouassou, S. Nodjiram (1994)
Cahiers de l'analyse des données
Similarity:
Jacques Vey (1970)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Yves Benoist (2003)
Publications Mathématiques de l'IHÉS
Similarity:
Every bounded convex open set Ω of is endowed with its Hilbert metric . We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, Ω is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary ∂Ω is locally the graph of a C strictly convex function whose derivative is quasisymmetric.
Yves Martínez-Maure (2000)
Publicacions Matemàtiques
Similarity:
Hedgehogs are a natural generalization of convex bodies of class C+ 2. After recalling some basic facts concerning this generalization, we use the notion of index to study differential and integral geometries of hedgehogs. As applications, we prove a particular case of the Tennis Ball Theorem and a property of normals to a plane convex body of constant width.
Jean-Pierre Carpentier (1964-1965)
Séminaire Choquet. Initiation à l'analyse
Similarity:
Claude Berge (1954)
Bulletin de la Société Mathématique de France
Similarity: