Convexes hyperboliques et fonctions quasisymétriques

Yves Benoist

Publications Mathématiques de l'IHÉS (2003)

  • Volume: 97, page 181-237
  • ISSN: 0073-8301

Abstract

top
Every bounded convex open set Ω of Rm is endowed with its Hilbert metric dΩ. We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, Ω is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary ∂Ω is locally the graph of a C1 strictly convex function whose derivative is quasisymmetric.

How to cite

top

Benoist, Yves. "Convexes hyperboliques et fonctions quasisymétriques." Publications Mathématiques de l'IHÉS 97 (2003): 181-237. <http://eudml.org/doc/104189>.

@article{Benoist2003,
author = {Benoist, Yves},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {hyperbolic convex sets; quasisymmetric functions},
language = {fre},
pages = {181-237},
publisher = {Springer},
title = {Convexes hyperboliques et fonctions quasisymétriques},
url = {http://eudml.org/doc/104189},
volume = {97},
year = {2003},
}

TY - JOUR
AU - Benoist, Yves
TI - Convexes hyperboliques et fonctions quasisymétriques
JO - Publications Mathématiques de l'IHÉS
PY - 2003
PB - Springer
VL - 97
SP - 181
EP - 237
LA - fre
KW - hyperbolic convex sets; quasisymmetric functions
UR - http://eudml.org/doc/104189
ER -

References

top
  1. 1. L. Ahlfors, Lectures on quasiconformal mappings, Wadthworth (1966). Zbl0138.06002MR200442
  2. 2. L. Ahlfors, A. Beurling, The boundary correspondance under quasiconformal mappings, Acta Math. 96 (1956) 125–142. Zbl0072.29602MR86869
  3. 3. Y. Benoist, Convexes divisibles I, preprint (2001) et Comp. Rend. Ac. Sc. 332 (2001), 387–390. Zbl1010.37014MR1826621
  4. 4. J. P. Benzecri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. Fr. 88 (1960), 229–332. Zbl0098.35204MR124005
  5. 5. E. Bierstone, P. Milman, Semianalytic and subanalytics sets, Publ. IHES 67 (1988), 5–42. Zbl0674.32002MR972342
  6. 6. J. Faraut, A. Koranyi, Analysis on symmetric cones, Oxford Math. Mono. (1994). Zbl0841.43002MR1446489
  7. 7. E. Ghys, P. De la Harpe, Sur les groupes hyperboliques d’après Mikhael Gromov, PM 83, Birkhäuser (1990). Zbl0731.20025
  8. 8. W. Goldman, Projective Geometry, Notes de cours a Maryland (1988). 
  9. 9. M. Gromov, Hyperbolic groups, in “Essays in group theory”, MSRI Publ. 8 (1987), 75–263. Zbl0634.20015
  10. 10. F. John, Extremum problem with inequalities as subsidiary conditions, Courant anniversary volume (1948), 187–204. Zbl0034.10503MR30135
  11. 11. A. Karlsson, G. Noskov, The Hilbert metric and Gromov hyperbolicity, l’Ens. Math. 48 (2002), 73–89. Zbl1046.53026
  12. 12. S. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 1 (1983), 193–260. Zbl0518.46018MR782608

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.