Representable equivalences for closed categories of modules
Sonia Dal Pio, Adalberto Orsatti (1994)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Sonia Dal Pio, Adalberto Orsatti (1994)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Rüdiger Göbel, Saharon Shelah (1986)
Fundamenta Mathematicae
Similarity:
Piotr Dowbor (2000)
Colloquium Mathematicae
Similarity:
Given a group G of k-linear automorphisms of a locally bounded k-category R it is proved that the endomorphism algebra of a G-atom B is a local semiprimary ring (Theorem 2.9); consequently, the injective -module is indecomposable (Corollary 3.1) and the socle of the tensor product functor is simple (Theorem 4.4). The problem when the Galois covering reduction to stabilizers with respect to a set U of periodic G-atoms (defined by the functors and )is full (resp. strictly full)...
J. de la Peña (1991)
Fundamenta Mathematicae
Similarity:
Gabriele Vezzosi (1997)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Raymundo Bautista, Efrén Pérez, Leonardo Salmerón (2013)
Open Mathematics
Similarity:
Given a convex algebra ∧0 in the tame finite-dimensional basic algebra ∧, over an algebraically closed field, we describe a special type of restriction of the generic ∧-modules.
Simion Breaz (2005)
Czechoslovak Mathematical Journal
Similarity:
We consider the quotient categories of two categories of modules relative to the Serre classes of modules which are bounded as abelian groups and we prove a Morita type theorem for some equivalences between these quotient categories.