Invariant subspaces on open Riemann surfaces. II

Morisuke Hasumi

Annales de l'institut Fourier (1976)

  • Volume: 26, Issue: 2, page 273-299
  • ISSN: 0373-0956

Abstract

top
We considerably improve our earlier results [Ann. Inst. Fourier, 24-4 (1974] concerning Cauchy-Read’s theorems, convergence of Green lines, and the structure of invariant subspaces for a class of hyperbolic Riemann surfaces.

How to cite

top

Hasumi, Morisuke. "Invariant subspaces on open Riemann surfaces. II." Annales de l'institut Fourier 26.2 (1976): 273-299. <http://eudml.org/doc/74282>.

@article{Hasumi1976,
abstract = {We considerably improve our earlier results [Ann. Inst. Fourier, 24-4 (1974] concerning Cauchy-Read’s theorems, convergence of Green lines, and the structure of invariant subspaces for a class of hyperbolic Riemann surfaces.},
author = {Hasumi, Morisuke},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {273-299},
publisher = {Association des Annales de l'Institut Fourier},
title = {Invariant subspaces on open Riemann surfaces. II},
url = {http://eudml.org/doc/74282},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Hasumi, Morisuke
TI - Invariant subspaces on open Riemann surfaces. II
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 2
SP - 273
EP - 299
AB - We considerably improve our earlier results [Ann. Inst. Fourier, 24-4 (1974] concerning Cauchy-Read’s theorems, convergence of Green lines, and the structure of invariant subspaces for a class of hyperbolic Riemann surfaces.
LA - eng
UR - http://eudml.org/doc/74282
ER -

References

top
  1. [1] M. BRELOT and G. CHOQUET, Espaces et lignes de Green, Ann. Inst. Fourier (Grenoble), 3 (1952), 199-264. Zbl0046.32701MR16,34e
  2. [2] C. CONSTANTINESCU and A. CORNEA, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin, 32 (1963). Zbl0112.30801MR28 #3151
  3. [3] G. M. GOLUSIN, Geometrische Funktionentheorie, Hochschulbücher für Mathematik, Bd. 31. Deutscher Verlag der Wissenschaften, Berlin, (1957). Zbl0083.06604MR19,735e
  4. [4] M. HASUMI, Invariant subspaces on open Riemann surfaces, Ann. Inst. Fourier (Grenoble), 24, Fasc. 4 (1974), 241-286. Zbl0287.46066MR51 #901
  5. [5] W. A. J. LUXEMBURG and A. C. ZAANEN, Riesz Spaces, North-Holland, Amsterdam, Vol. I, (1971). Zbl0231.46014MR58 #23483
  6. [6] L. NAÏM, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble), 7 (1957), 183-281. Zbl0086.30603MR20 #6608
  7. [7] C. NEVILLE, Invariant subspaces of Hardy classes on infinitely connected open surfaces, Mem. Amer. Math. Soc., No. 160 (1975). Zbl0314.46052MR58 #28516
  8. [8] I. I. PRIVALOV, Randeigenschaften analytischen Funktionen, Hochschulbücher für Mathematik, Bd. 25, Deutscher Verlag der Wissenschaften, Berlin, 1956. Zbl0073.06501
  9. [9] W. RUDIN, Analytic functions of class Hp, Trans. Amer. Math. Soc., 78 (1955), 46-66. Zbl0064.31203MR16,810b
  10. [10] L. SARIO and M. NAKAI, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 164 (1970). Zbl0199.40603MR41 #8660
  11. [11] H. WIDOM, H p sections of vector bundles over Riemann surfaces, Ann. of Math., 94 (1971), 304-324. Zbl0238.32014MR44 #5976

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.