Displaying similar documents to “On dicritical foliations and Halphen pencils”

Holomorphic foliations by curves on 3 with non-isolated singularities

Gilcione Nonato Costa (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let be a holomorphic foliation by curves on 3 . We treat the case where the set Sing ( ) consists of disjoint regular curves and some isolated points outside of them. In this situation, using Baum-Bott’s formula and Porteuos’theorem, we determine the number of isolated singularities, counted with multiplicities, in terms of the degree of , the multiplicity of along the curves and the degree and genus of the curves.

Foliations in algebraic surfaces having a rational first integral.

Alexis García Zamora (1997)

Publicacions Matemàtiques

Similarity:

Given a foliation in an algebraic surface having a rational first integral a genus formula for the general solution is obtained. In the case S = P some new counter-examples to the classic formulation of the Poincaré problem are presented. If S is a rational surface and has singularities of type (1, 1) or (1,-1) we prove that the general solution is a non-singular curve.