Minimal models of foliated algebraic surfaces

Marco Brunella

Bulletin de la Société Mathématique de France (1999)

  • Volume: 127, Issue: 2, page 289-305
  • ISSN: 0037-9484

How to cite

top

Brunella, Marco. "Minimal models of foliated algebraic surfaces." Bulletin de la Société Mathématique de France 127.2 (1999): 289-305. <http://eudml.org/doc/87807>.

@article{Brunella1999,
author = {Brunella, Marco},
journal = {Bulletin de la Société Mathématique de France},
keywords = {holomorphic foliations; algebraic surfaces; minimal models; birational transformations; polynomial diffeomorphisms},
language = {eng},
number = {2},
pages = {289-305},
publisher = {Société mathématique de France},
title = {Minimal models of foliated algebraic surfaces},
url = {http://eudml.org/doc/87807},
volume = {127},
year = {1999},
}

TY - JOUR
AU - Brunella, Marco
TI - Minimal models of foliated algebraic surfaces
JO - Bulletin de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 127
IS - 2
SP - 289
EP - 305
LA - eng
KW - holomorphic foliations; algebraic surfaces; minimal models; birational transformations; polynomial diffeomorphisms
UR - http://eudml.org/doc/87807
ER -

References

top
  1. [BPV] BARTH (W.), PETERS (C.), VAN DE VEN (A.). — Compact complex surfaces. — Springer, 1984. Zbl0718.14023MR86c:32026
  2. [BS] BEDFORD (E.), SMILLIE (J.). — Polynomial diffeomorphisms of ℂ², I : currents, equilibrium measures and hyperbolicity, Inv. Math., t. 103, 1991, p. 69-99 ; II : stable manifolds and recurrence, J. AMS, t. 4, 1991, p. 657-679. Zbl0744.58068
  3. [B] BRUNELLA (M.). — Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. École Normale Sup., t. 30, 1997, p. 569-594. Zbl0893.32019MR98i:32051
  4. [CS] CAMACHO (C.), SAD (P.). — Invariant varieties through singularities of holomorphic vector fields, Ann. Math., t. 115, 1982, p. 579-595. Zbl0503.32007MR83m:58062
  5. [C] CERVEAU (D.). — Sur la linéarisation de certains groupes de difféomorphismes polynomiaux du plan et les domaines de Fatou-Bieberbach. — Preprint, 1997. 
  6. [K] KOBAYASHI (S.). — Transformation groups in differential geometry. — Springer, 1972. Zbl0246.53031MR50 #8360
  7. [M] MENDES (L.G.). — Birational invariants of foliations. — Thesis at IMPA, Rio de Janeiro, 1997. 
  8. [MP] MIYAOKA (Y.), PETERNELL (T.). — Geometry of higherdimensional algebraic varieties. — DMV seminar, Birkhäuser, 1997. Zbl0865.14018MR98g:14001
  9. [SB] SHEPHERD-BARRON (N.I.). — Miyaoka's theorems, in Flips and abundance for algebraic threefolds, Astérisque, t. 211, 1992, p. 103-114. Zbl0809.14034
  10. [U] UEDA (T.). — On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., t. 22, 1983, p. 583-607. Zbl0519.32019MR84g:32043

NotesEmbed ?

top

You must be logged in to post comments.