The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur le développement de la fonction elliptique μ ( x ) suivant les puissances croissantes du module”

Fonctions définies dans le plan et vérifiant certaines propriétés de moyenne

Alain Yger (1981)

Annales de l'institut Fourier

Similarity:

Soit a un réel de ] 0 , 1 [ . Nous étudions le système d’équations de convolution suivant ( * ) x R 2 , f ( x ) = 1 4 ϵ = ± 1 ϵ ' = ± 1 f ( x + ( ϵ , ϵ ' ) ) = 1 4 ϵ = ± 1 ϵ ' = ± 1 f ( x + a ( ϵ , ϵ ' ) ) . Nous démontrons que les exponentielles polynômes solutions de ( * ) sont denses dans l’espace des solutions C du système d’équations; l’idéal de ' ( R 2 ) engendré par les transformées de Fourier des deux mesures intervenant ici est “slowly decreasing” au sens de Berenstein-Taylor. Lorsque a n’est pas un nombre de Liouville, nous montrons qu’il existe un ouvert relativement compact telle que...