The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur l’intégrale 0 z z n e - z 2 2 + z x d z

Indépendance linéaire et algébrique de fonctions liées à la fonction q -dzeta

Jean-Paul Bézivin (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Pour q , | q | < 1 , on définit la q -analogue de la fonction zeta de Riemann par les égalités ζ q ( k ) = n 1 σ k - 1 ( n ) q n = n 1 n k - 1 q n 1 - q n . Dans [8], W. Zudilin énonce deux questions à propos de ces fonctions de q . La première concerne l’indépendance linéaire sur ( q ) des fonctions ζ q ( k ) , pour k 1 , et la seconde l’indépendance algébrique sur ( q ) des fonctions ζ q ( 2 ) , ζ q ( 4 ) , ζ q ( 6 ) , et des fonctions ζ q ( 2 k + 1 ) , k 0 . Dans [5], Y. Pupyrev répond positivement à la première question, et donne des résultats partiels pour la seconde. Dans cet article, nous considérons...

Algèbres de polynômes tropicaux

Dominique Castella (2013)

Annales mathématiques Blaise Pascal

Similarity:

Nous continuons dans ce second article, l’étude des outils algébrique de l’algèbre de la caractéristique 1 : nous examinons plus spécialement ici les algèbres de polynômes sur un semi-corps idempotent. Ce travail est motivé par le développement de la géométrie tropicale qui apparaît comme étant la géométrie algébrique de l’algèbre tropicale. En fait l’objet algébrique le plus intéressant est l’image de l’algèbre de polynôme dans son semi-corps des fractions. Nous pouvons ainsi retrouver...

Imbrications entre le théorème de Mason, la descente de Belyi et les différentes formes de la conjecture ( a b c )

Michel Langevin (1999)

Journal de théorie des nombres de Bordeaux

Similarity:

Soient A , B , C = A + B trois éléments de l’ensemble * des entiers > 0 (resp. [ X ] ) des polynômes complexes) premiers entre eux ; on note r ( A B C ) le produit des facteurs premiers (resp. le nombre des facteurs premiers dans [ X ] ) du produit A B C . La conjecture ( a b c ) énonce que, pour tout ϵ > 0 , il existe C ϵ > 0 pour lequel l’inégalité : r ( A B C ) C ϵ S 1 - ϵ avec S = max ( A , B , C ) ) est toujours vérifiée. Le théorème de Mason établit l’inégalité, D (supposé > 0 ) désignant le plus grand des degrés des polynômes A , B , C : r ( A B C ) D + 1 . Les cas de triplets de polynômes...