Displaying similar documents to “A property of A-sequences”

Rings with zero intersection property on annihilators: Zip rings.

Carl Faith (1989)

Publicacions Matemàtiques

Similarity:

Zelmanowitz [12] introduced the concept of ring, which we call right zip rings, with the defining properties below, which are equivalent: (ZIP 1) If the right anihilator X of a subset X of R is zero, then X1 = 0 for a finite subset X1 ⊆ X. (ZIP 2) If L is a left ideal and if L = 0, then L1 ...

Polynomial rings over Jacobson-Hilbert rings.

Carl Faith (1989)

Publicacions Matemàtiques

Similarity:

A ring R is (in Vámos' terminology) if every subdirectly irreducible factor ring R/I is self-injective. rings include Noetherian rings, Morita rings and almost maximal valuation rings ([V1]). In [F3] we raised the question of whether a polynomial ring R[x] over a ring R is again . In this paper we show this is not the case.

When every flat ideal is projective

Fatima Cheniour, Najib Mahdou (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we study the class of rings in which every flat ideal is projective. We investigate the stability of this property under homomorphic image, and its transfer to various contexts of constructions such as direct products, and trivial ring extensions. Our results generate examples which enrich the current literature with new and original families of rings that satisfy this property.