When every flat ideal is projective
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 1, page 1-7
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCheniour, Fatima, and Mahdou, Najib. "When every flat ideal is projective." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 1-7. <http://eudml.org/doc/260823>.
@article{Cheniour2014,
abstract = {In this paper, we study the class of
rings in which every flat ideal is
projective. We investigate the stability
of this property under homomorphic image,
and its transfer to various contexts
of constructions such as direct products,
and trivial ring extensions. Our results
generate examples which enrich the
current literature with new and original
families of rings that satisfy this
property.},
author = {Cheniour, Fatima, Mahdou, Najib},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {FP-ring; direct product; homomorphic image; amalgamation of rings; $A\bowtie ^\{f\}J $; trivial extension; FP-ring; direct product; homomorphic image; amalgamation of rings; ; trivial extension},
language = {eng},
number = {1},
pages = {1-7},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {When every flat ideal is projective},
url = {http://eudml.org/doc/260823},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Cheniour, Fatima
AU - Mahdou, Najib
TI - When every flat ideal is projective
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 1
EP - 7
AB - In this paper, we study the class of
rings in which every flat ideal is
projective. We investigate the stability
of this property under homomorphic image,
and its transfer to various contexts
of constructions such as direct products,
and trivial ring extensions. Our results
generate examples which enrich the
current literature with new and original
families of rings that satisfy this
property.
LA - eng
KW - FP-ring; direct product; homomorphic image; amalgamation of rings; $A\bowtie ^{f}J $; trivial extension; FP-ring; direct product; homomorphic image; amalgamation of rings; ; trivial extension
UR - http://eudml.org/doc/260823
ER -
References
top- Ali M.M., 10.1080/00927870701353852, Comm. Algebra 35 (2007), 2767–2792. Zbl1136.13007MR2356298DOI10.1080/00927870701353852
- Anderson D.D., Winders M., 10.1216/JCA-2009-1-1-3, J. Commut. Algebra 1 (2009), no. 1, 3–56. Zbl1194.13002MR2462381DOI10.1216/JCA-2009-1-1-3
- Bakkari C., Kabbaj S., Mahdou N., 10.1016/j.jpaa.2009.04.011, J. Pure Appl. Algebra 214 (2010), 53–60. Zbl1175.13008MR2561766DOI10.1016/j.jpaa.2009.04.011
- Bazzoni S., Glaz S., 10.1016/j.jalgebra.2007.01.004, J. Algebra 310 (2007), 180–193. Zbl1118.13020MR2307788DOI10.1016/j.jalgebra.2007.01.004
- Bourbaki N., Algèbre commutative, Chapitre 10, Masson, Paris, 1989. Zbl1107.13002MR2272929
- Costa D.L., 10.1080/00927879408825061, Comm. Algebra 22 (1994), 3997–4011. Zbl0814.13010MR1280104DOI10.1080/00927879408825061
- Couchot F., 10.1016/j.jpaa.2007.01.010, J. Pure Appl. Algebra 211 (2007), 235–247. Zbl1123.13016MR2333769DOI10.1016/j.jpaa.2007.01.010
- D'Anna M., 10.1016/j.jalgebra.2005.12.023, J. Algebra 306 (2006), 507–519. Zbl1120.13022MR2271349DOI10.1016/j.jalgebra.2005.12.023
- D'Anna M., Fontana M., 10.1142/S0219498807002326, J. Algebra Appl. 6 (2007), 443–459. Zbl1126.13002MR2337762DOI10.1142/S0219498807002326
- D'Anna M., Fontana M., 10.1007/s11512-006-0038-1, Arkiv Mat. 45 (2007), 241–252. MR2342602DOI10.1007/s11512-006-0038-1
- D'Anna M., Finacchiaro C.A., Fontana M., 10.1016/j.jpaa.2009.12.008, J. Pure Appl. Algebra 214 (2010), 1633–1641. MR2593689DOI10.1016/j.jpaa.2009.12.008
- El Baghdadi S., Jhilal A., Mahdou N., 10.1016/j.jpaa.2011.05.003, J. Pure Appl. Algebra 216 (2012), 71–76. Zbl1239.13002MR2826419DOI10.1016/j.jpaa.2011.05.003
- Fadden C.M., Greferath M., Zumbrägel J., Characteristics of Invariant Weights Related to Code Equivalence over Rings, inria-00607730, version 1–11 Jul 2011. Zbl1259.94068
- Glaz S., 10.1201/9781420028249.ch17, Lecture Notes Pure Appl. Math., 241, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 272–281. Zbl1107.13023MR2140700DOI10.1201/9781420028249.ch17
- Glaz S., Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. Zbl0787.13001MR0999133
- Glaz S., Controlling the Zero Divisors of a Commutative Rings, Lecture Notes in Pure and Applied Mathematics, 231, Marcel Dekker, New York, 2003, pp. 191–212. MR2029827
- Huckaba J.A., Commutative Rings with Zero Divizors, Marcel Dekker, New York-Basel, 1988. MR0938741
- Kabbaj S., Mahdou N., 10.1081/AGB-200027791, Comm. Algebra 32 (2004), no. 10, 3937–3953. Zbl1068.13002MR2097439DOI10.1081/AGB-200027791
- Mahdou N., 10.1081/AGB-100104986, Comm. Algebra 29 (2001), 2775–2785. MR1848381DOI10.1081/AGB-100104986
- Mahdou N., 10.1080/00927870500242991, Comm. Algebra 33 (2005), 3489–3496. Zbl1080.13004MR2175447DOI10.1080/00927870500242991
- Mahdou N., Mouanis H., 10.1081/AGB-120029904, Comm. Algebra 32 (2004), no. 5, 1823–1834. MR2099703DOI10.1081/AGB-120029904
- Nagata M., Local Rings, Interscience, New York, 1962. Zbl0386.13010MR0155856
- Rotman J.J., An Introduction to Homological Algebra, Academic Press, New York, 1979. Zbl1157.18001MR0538169
- Sally J.D., Vasconcelos W.V., 10.1080/00927877508822059, Comm. Algebra 3 (1975), 531–543. MR0379466DOI10.1080/00927877508822059
- Zafruallah M., 10.1080/00927879008824014, Comm. Algebra 18 (1990), 2151–2158. MR1063129DOI10.1080/00927879008824014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.