Displaying similar documents to “A distortion theorem for quasiconformal mappings”

An inverse Sobolev lemma.

Pekka Koskela (1994)

Revista Matemática Iberoamericana

Similarity:

We establish an inverse Sobolev lemma for quasiconformal mappings and extend a weaker version of the Sobolev lemma for quasiconformal mappings of the unit ball of R to the full range 0 < p < n. As an application we obtain sharp integrability theorems for the derivative of a quasiconformal mapping of the unit ball of R in terms of the growth of the mapping.

Quasiconformal mappings with Sobolev boundary values

Kari Astala, Mario Bonk, Juha Heinonen (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We consider quasiconformal mappings in the upper half space + n + 1 of n + 1 , n 2 , whose almost everywhere defined trace in n has distributional differential in L n ( n ) . We give both geometric and analytic characterizations for this possibility, resembling the situation in the classical Hardy space H 1 . More generally, we consider certain positive functions defined on + n + 1 , called conformal densities. These densities mimic the averaged derivatives of quasiconformal mappings, and we prove analogous trace theorems...

Composition operators on W 1 X are necessarily induced by quasiconformal mappings

Luděk Kleprlík (2014)

Open Mathematics

Similarity:

Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.

On conformal dilatation in space.

Bishop, Christopher J., Gutlyanskiĭ, Vladimir Ya., Martio, Olli, Vuorinen, Matti (2003)

International Journal of Mathematics and Mathematical Sciences

Similarity: