The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Period mapping via Brieskorn modules”

On the structure of Brieskorn lattice

Morihiko Saito (1989)

Annales de l'institut Fourier

Similarity:

We study the structure of the filtered Gauss-Manin system associated to a holomorphic function with an isolated singularity, and get a basis of the Brieskorn lattice Ω X , 0 n + 1 / d f d Ω X , 0 n + 1 over { { t - 1 } } such that the action of t is expressed by t v = A 0 + A 1 t - 1 v for two matrices A 0 , A 1 with A 1 semi-simple, where v = t ( v 1 ... v μ ) is the basis. As an application, we calculate the b -function of f in the case of two variables.

Gauss-Manin systems, Brieskorn lattices and Frobenius structures (I)

Antoine Douai, Claude Sabbah (2003)

Annales de l’institut Fourier

Similarity:

We associate to any convenient nondegenerate Laurent polynomial f on the complex torus ( * ) n a canonical Frobenius-Saito structure on the base space of its universal unfolding. According to the method of K. Saito (primitive forms) and of M. Saito (good basis of the Gauss-Manin system), the main problem, which is solved in this article, is the analysis of the Gauss-Manin system of f (or its universal unfolding) and of the corresponding Hodge theory.