The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Automorphisms of semigroups of polynomials”

Wild Multidegrees of the Form (d,d₂,d₃) for Fixed d ≥ 3

Marek Karaś, Jakub Zygadło (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let d be any integer greater than or equal to 3. We show that the intersection of the set mdeg(Aut(ℂ³))∖ mdeg(Tame(ℂ³)) with {(d₁,d₂,d₃) ∈ (ℕ ₊)³: d = d₁ ≤ d₂≤ d₃} has infinitely many elements, where mdeg h = (deg h₁,...,deg hₙ) denotes the multidegree of a polynomial mapping h = (h₁,...,hₙ): ℂⁿ → ℂⁿ. In other words, we show that there are infinitely many wild multidegrees of the form (d,d₂,d₃), with fixed d ≥ 3 and d ≤ d₂ ≤ d₃, where a sequence (d₁,...,dₙ)∈ ℕ ⁿ is a wild multidegree...

Tame Automorphisms of ℂ³ with Multidegree of the Form (p₁,p₂,d₃)

Marek Karaś (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let d₃ ≥ p₂ > p₁ ≥ 3 be integers such that p₁,p₂ are prime numbers. We show that the sequence (p₁,p₂,d₃) is the multidegree of some tame automorphism of ℂ³ if and only if d₃ ∈ p₁ℕ + p₂ℕ, i.e. if and only if d₃ is a linear combination of p₁ and p₂ with coefficients in ℕ.

The solution of the Tame Generators Conjecture according to Shestakov and Umirbaev

Arno van den Essen (2004)

Colloquium Mathematicae

Similarity:

The tame generators problem asked if every invertible polynomial map is tame, i.e. a finite composition of so-called elementary maps. Recently in [8] it was shown that the classical Nagata automorphism in dimension 3 is not tame. The proof is long and very technical. The aim of this paper is to present the main ideas of that proof.

On reconstruction of polynomial automorphisms

Paweł Gniadek (1996)

Annales Polonici Mathematici

Similarity:

We extend results on reconstructing a polynomial automorphism from its restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases works also for this class of surfaces.