The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A property of the ϕ and σ j functions”

Multiplicative functions and k -automatic sequences

Soroosh Yazdani (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

A sequence is called k -automatic if the n ’th term in the sequence can be generated by a finite state machine, reading n in base k as input. We show that for many multiplicative functions, the sequence ( f ( n ) mod v ) n 1 is not k -automatic. Among these multiplicative functions are γ m ( n ) , σ m ( n ) , μ ( n ) et φ ( n ) .

A note on factorization of the Fermat numbers and their factors of the form 3 h 2 n + 1

Michal Křížek, Jan Chleboun (1994)

Mathematica Bohemica

Similarity:

We show that any factorization of any composite Fermat number F m = 2 2 m + 1 into two nontrivial factors can be expressed in the form F m = ( k 2 n + 1 ) ( 2 n + 1 ) for some odd k and , k 3 , 3 , and integer n m + 2 , 3 n < 2 m . We prove that the greatest common divisor of k and is 1, k + 0 m o d 2 n , m a x ( k , ) F m - 2 , and either 3 | k or 3 | , i.e., 3 h 2 m + 2 + 1 | F m for an integer h 1 . Factorizations of F m into more than two factors are investigated as well. In particular, we prove that if F m = ( k 2 n + 1 ) 2 ( 2 j + 1 ) then j = n + 1 , 3 | and 5 | .