The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Subgroups of locally normal groups”

Totally inert groups

V. V. Belyaev, M. Kuzucuoğlu, E. Seçkin (1999)

Rendiconti del Seminario Matematico della Università di Padova

Similarity:

Groups with every subgroup ascendant-by-finite

Sergio Camp-Mora (2013)

Open Mathematics

Similarity:

A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.

Inert subgroups of uncountable locally finite groups

Barbara Majcher-Iwanow (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be an uncountable universal locally finite group. We study subgroups H < G such that for every g G , | H : H H g | < | H | .

On some properties of pronormal subgroups

Leonid Kurdachenko, Alexsandr Pypka, Igor Subbotin (2010)

Open Mathematics

Similarity:

New results on tight connections among pronormal, abnormal and contranormal subgroups of a group have been established. In particular, new characteristics of pronormal and abnormal subgroups have been obtained.