The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A short proof of Dvoretzky's theorem on almost spherical sections of convex bodies”

Essentially-Euclidean convex bodies

Alexander E. Litvak, Vitali D. Milman, Nicole Tomczak-Jaegermann (2010)

Studia Mathematica

Similarity:

In this note we introduce a notion of essentially-Euclidean normed spaces (and convex bodies). Roughly speaking, an n-dimensional space is λ-essentially-Euclidean (with 0 < λ < 1) if it has a [λn]-dimensional subspace which has further proportional-dimensional Euclidean subspaces of any proportion. We consider a space X₁ = (ℝⁿ,||·||₁) with the property that if a space X₂ = (ℝⁿ,||·||₂) is "not too far" from X₁ then there exists a [λn]-dimensional subspace E⊂ ℝⁿ such that E₁ = (E,||·||₁)...

An alternative proof of Petty's theorem on equilateral sets

Tomasz Kobos (2013)

Annales Polonici Mathematici

Similarity:

The main goal of this paper is to provide an alternative proof of the following theorem of Petty: in a normed space of dimension at least three, every 3-element equilateral set can be extended to a 4-element equilateral set. Our approach is based on the result of Kramer and Németh about inscribing a simplex into a convex body. To prove the theorem of Petty, we shall also establish that for any three points in a normed plane, forming an equilateral triangle of side p, there exists a fourth...

The skeleta of convex bodies

David G. Larman (2009)

Banach Center Publications

Similarity:

The connectivity and measure theoretic properties of the skeleta of convex bodies in Euclidean space are discussed, together with some long standing problems and recent results.