Stability of mappings, IV. Classification of stable germs by -algebras
John N. Mather (1969)
Publications Mathématiques de l'IHÉS
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
John N. Mather (1969)
Publications Mathématiques de l'IHÉS
Similarity:
Romero Fuster, Maria del Carmen, Ruas, Maria Aparecida Soares (1994)
Portugaliae Mathematica
Similarity:
John Guckenheimer (1973)
Annales de l'institut Fourier
Similarity:
This paper outlines the manner in which Thom’s theory of catastrophes fits into the Hamilton-Jacobi theory of partial differential equations. The representation of solutions of a first order partial differential equation as lagrangian manifolds allows one to study the local structure of their singularities. The structure of generic singularities is closely related to Thom’s concept of the elementary catastrophe associated to a singularity. Three concepts of the stability of a singularity...
S. Smale (1963)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Feliks Przytycki (1977)
Studia Mathematica
Similarity:
Dušan Bednařík, Karel Pastor (2007)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
The aim of our article is to present a proof of the existence of local minimizer in the classical optimality problem without constraints under weaker assumptions in comparisons with common statements of the result. In addition we will provide rather elementary and self-contained proof of that result.
Luis Antonio Favaro, C. M. Mendes (1986)
Annales de l'institut Fourier
Similarity:
In this paper, we give some examples which point to the non-existence of -global stable diagrams , compact. If : is fixed we define the -equivalence for maps and the corresponding -stability. The globalization procedure works and we can compare the -stability, -infinitesimal stability, and -homotopical stability. Also we give some characterization theorems for lower dimensions.