Displaying similar documents to “A normalized weakly null sequence with no shrinking subsequence in a Banach space not containing 1

Spreading sequences in JT

Helga Fetter, B. Gamboa de Buen (1997)

Studia Mathematica

Similarity:

We prove that a normalized non-weakly null basic sequence in the James tree space JT admits a subsequence which is equivalent to the summing basis for the James space J. Consequently, every normalized basic sequence admits a spreading subsequence which is either equivalent to the unit vector basis of l 2 or to the summing basis for J.

On the complemented subspaces of the Schreier spaces

I. Gasparis, D. Leung (2000)

Studia Mathematica

Similarity:

It is shown that for every 1 ≤ ξ < ω, two subspaces of the Schreier space X ξ generated by subsequences ( e l n ξ ) and ( e m n ξ ) , respectively, of the natural Schauder basis ( e n ξ ) of X ξ are isomorphic if and only if ( e l n ξ ) and ( e m n ξ ) are equivalent. Further, X ξ admits a continuum of mutually incomparable complemented subspaces spanned by subsequences of ( e n ξ ) . It is also shown that there exists a complemented subspace spanned by a block basis of ( e n ξ ) , which is not isomorphic to a subspace generated by a subsequence of ( e n ζ ) ,...

Uniqueness of unconditional bases of c 0 ( l p ) , 0 < p < 1

C. Leránoz (1992)

Studia Mathematica

Similarity:

We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of c 0 ( l p ) must be equivalent to a permutation of a subset of the canonical unit vector basis of c 0 ( l p ) . In particular, c 0 ( l p ) has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for c 0 ( l ) .

Representing and absolutely representing systems

V. Kadets, Yu. Korobeĭnik (1992)

Studia Mathematica

Similarity:

We introduce various classes of representing systems in linear topological spaces and investigate their connections in spaces with different topological properties. Let us cite a typical result of the paper. If H is a weakly separated sequentially separable linear topological space then there is a representing system in H which is not absolutely representing.