The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Rigid subanalytic sets”

Absolutely strongly star-Hurewicz spaces

Yan-Kui Song (2015)

Open Mathematics

Similarity:

A space X is absolutely strongly star-Hurewicz if for each sequence (Un :n ∈ℕ/ of open covers of X and each dense subset D of X, there exists a sequence (Fn :n ∈ℕ/ of finite subsets of D such that for each x ∈X, x ∈St(Fn; Un) for all but finitely many n. In this paper, we investigate the relationships between absolutely strongly star-Hurewicz spaces and related spaces, and also study topological properties of absolutely strongly star-Hurewicz spaces.

Remarks on strongly star-Menger spaces

Yan-Kui Song (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is strongly star-Menger if for each sequence ( 𝒰 n : n ) of open covers of X , there exists a sequence ( K n : n N ) of finite subsets of X such that { S t ( K n , 𝒰 n ) : n } is an open cover of X . In this paper, we investigate the relationship between strongly star-Menger spaces and related spaces, and also study topological properties of strongly star-Menger spaces.

A generic condition implying o-minimality for restricted C -functions

Olivier Le Gal (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove that the expansion of the real field by a restricted C -function is generically o-minimal. Such a result was announced by A. Grigoriev, and proved in a different way. Here, we deduce quasi-analyticity from a transcendence condition on Taylor expansions. This then implies o-minimality. The transcendance condition is shown to be generic. As a corollary, we recover in a simple way that there exist o-minimal structures that doesn’t admit analytic cell decomposition, and that there...