Displaying similar documents to “Optimal control of obstacle problems : existence of Lagrange multipliers”

Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints

Eduardo Casas (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The goal of this paper is to prove the first and second order optimality conditions for some control problems governed by semilinear elliptic equations with pointwise control constraints and finitely many equality and inequality pointwise state constraints. To carry out the analysis we formulate a regularity assumption which is equivalent to the first order optimality conditions. Though the presence of pointwise state constraints leads to a discontinuous adjoint state, we prove that...

Optimal Control of Obstacle Problems: Existence of Lagrange Multipliers

Maïtine Bergounioux, Fulbert Mignot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study first order optimality systems for the control of a system governed by a variational inequality and deal with Lagrange multipliers: is it possible to associate to each pointwise constraint a multiplier to get a “good” optimality system? We give positive and negative answers for the finite and infinite dimensional cases. These results are compared with the previous ones got by penalization or differentiation.

Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems

Maria do Rosário de Pinho, Maria Margarida Ferreira, Fernando Fontes (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Necessary conditions of optimality in the form of Unmaximized Inclusions (UI) are derived for optimal control problems with state constraints. The conditions presented here generalize earlier optimality conditions to problems that may be nonconvex. The derivation of UI-type conditions in the absence of the convexity assumption is of particular importance when deriving necessary conditions for constrained problems. We illustrate this feature by establishing, as an application, optimality...

Minima in control problems with constraints

Gianna Stefani, PierLuigi Zezza (1995)

Banach Center Publications

Similarity:

This paper is devoted to describing second order conditions in the framework of extremal problems, that is, conditions obtained by reducing the optimal control problem to an abstract one in a suitable Banach (or Hilbert) space. The studied problem includes equality constraints both on the end-points and on the state-control trajectory. The second goal is to give a complete description of necessary and sufficient second order conditions for weak local optimality by describing first the...