The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An example in the gradient theory of phase transitions”

Expansion for the superheating field in a semi-infinite film in the weak- limit

Pierre Del Castillo (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Dorsey, Di Bartolo and Dolgert (Di Bartolo , 1996; 1997) have constructed asymptotic matched solutions at order two for the half-space Ginzburg-Landau model, in the weak- limit. These authors deduced a formal expansion for the superheating field in powers of κ 1 2 up to order four, extending the formula by De Gennes (De Gennes, 1966) and the two terms in Parr's formula (Parr, 1976). In this paper, we construct asymptotic matched solutions at all orders leading to a complete expansion...

On a Volume Constrained Variational Problem in SBV²(Ω): Part I

Ana Cristina Barroso, José Matias (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions ∈ ²(Ω) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for (.) is proved and the asymptotic behaviour of the solutions is investigated.

Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces

Stefano Lisini (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study existence and approximation of non-negative solutions of partial differential equations of the type 
 t u - div ( A ( ( f ( u ) ) + u V ) ) = 0 in ( 0 , + ) × n , ( 0 . 1 ) where is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, f : [ 0 , + ) [ 0 , + ) is a suitable non decreasing function, V : n is a convex function. Introducing the energy functional φ ( u ) = n F ( u ( x ) ) d x + n V ( x ) u ( x ) d x , where is a convex function linked to by f ( u ) = u F ' ( u ) - F ( u ) , we show that is the “gradient flow” of with respect to the 2-Wasserstein distance between probability measures on the...