Displaying similar documents to “Numerical minimization of eigenmodes of a membrane with respect to the domain”

Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.

An Optimum Design Problem in Magnetostatics

Antoine Henrot, Grégory Villemin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.

Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI

Alexandros Markopoulos, Petr Beremlijski, Oldřich Vlach, Marie Sadowská (2023)

Applications of Mathematics

Similarity:

The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich’s differential calculus to compute...