Double groupoids and crossed modules
Ronald Brown, Christopher B. Spencer (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Ronald Brown, Christopher B. Spencer (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
L. Sin-Min, S. Aye (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Baez, John C., Hoffnung, Alexander E., Walker, Christopher D. (2010)
Theory and Applications of Categories [electronic only]
Similarity:
Bourn, Dominique (2006)
Theory and Applications of Categories [electronic only]
Similarity:
James Howie (1979)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Anders Kock (2003)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Morton, Jeffrey (2006)
Theory and Applications of Categories [electronic only]
Similarity:
W. Waliszewski
Similarity:
CONTENTSIntroduction................................................................................................................................................. 3I. TERMS AND NOTATION....................................................................................................................... 5II. GROUPOIDS AND CATEGORIES...................................................................................................... 61. The notion of groupoid............................................................................................................................
Ivan, Gh. (1999)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Jean Pradines (2004)
Open Mathematics
Similarity:
Starting with some motivating examples (classical atlases for a manifold, space of leaves of a foliation, group orbits), we propose to view a Lie groupoid as a generalized atlas for the “virtual structure” of its orbit space, the equivalence between atlases being here the smooth Morita equivalence. This “structure” keeps memory of the isotropy groups and of the smoothness as well. To take the smoothness into account, we claim that we can go very far by retaining just a few formal properties...