Homotopy theory for (braided) cat-groups
Antonio R. Garzon, Jesus G. Miranda (1997)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Antonio R. Garzon, Jesus G. Miranda (1997)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Timothy Porter (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Fritsch, Rudolf, Golasiński, Marek (1998)
Theory and Applications of Categories [electronic only]
Similarity:
Klaus Heiner Kamps (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Timothy Porter (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Francisco Díaz, Sergio Rodríguez-Machín (2006)
Open Mathematics
Similarity:
Generally, in homotopy theory a cylinder object (or, its dual, a path object) is used to define homotopy between morphisms, and a cone object is used to build exact sequences of homotopy groups. Here, an axiomatic theory based on a cone functor is given. Suspension objects are associated to based objects and cofibrations, obtaining homotopy groups referred to an object and relative to a cofibration, respectively. Exact sequences of these groups are built. Algebraic and particular examples...
D.M. Latch, R.W. Thomason, W.S. Wilson (1978/79)
Mathematische Zeitschrift
Similarity:
Hans Scheerer, Daniel Tanré (1991)
Publicacions Matemàtiques
Similarity:
Let S be the category of r-reduced simplicial sets, r ≥ 3; let L be the category of (r-1)-reduced differential graded Lie algebras over Z. According to the fundamental work [3] of W.G. Dwyer both categories are endowed with closed model category structures such that the associated tame homotopy category of S is equivalent to the associated homotopy category of L. Here we embark on a study of this equivalence and its implications. In particular, we show how to compute homology, cohomology,...
J. García-Calcines, P. García-Díaz, S. Rodríguez-Machín (2006)
Open Mathematics
Similarity:
Taking cylinder objects, as defined in a model category, we consider a cylinder construction in a cofibration category, which provides a reformulation of relative homotopy in the sense of Baues. Although this cylinder is not a functor we show that it verifies a list of properties which are very closed to those of an I-category (or category with a natural cylinder functor). Considering these new properties, we also give an alternative description of Baues’ relative homotopy groupoids. ...