Homotopy theory for (braided) cat-groups
Antonio R. Garzon; Jesus G. Miranda
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)
- Volume: 38, Issue: 2, page 99-139
- ISSN: 1245-530X
Access Full Article
topHow to cite
topGarzon, Antonio R., and Miranda, Jesus G.. "Homotopy theory for (braided) cat-groups." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.2 (1997): 99-139. <http://eudml.org/doc/91590>.
@article{Garzon1997,
author = {Garzon, Antonio R., Miranda, Jesus G.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {cat-group; internal category; crossed module; simplicial groups; quadratic modules; braiding; symmetry map; closed model category; sets of homotopy classes of maps; connected topological spaces},
language = {eng},
number = {2},
pages = {99-139},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Homotopy theory for (braided) cat-groups},
url = {http://eudml.org/doc/91590},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Garzon, Antonio R.
AU - Miranda, Jesus G.
TI - Homotopy theory for (braided) cat-groups
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 2
SP - 99
EP - 139
LA - eng
KW - cat-group; internal category; crossed module; simplicial groups; quadratic modules; braiding; symmetry map; closed model category; sets of homotopy classes of maps; connected topological spaces
UR - http://eudml.org/doc/91590
ER -
References
top- [1] M.G. Barratt, Track groups II, Proc. London Math. Soc. (3) 5 (1955), 258-329. Zbl0065.16302MR73179
- [2] H.J. Baues, Combinatorial homotopy and 4-dimensional complexes, de Gruyter Expos. Math. vol. 2, 1991. Zbl0716.55001MR1096295
- [3] A.L. Blakers, On the relations between homotopy and homology groups, Ann. of Math. vol. 49 (1948), 428-461. Zbl0040.25701MR24132
- [4] R. Brown, Fibrations of groupoids, J. of Algebra15 (1970), 103-132. Zbl0194.02202MR271194
- [5] R. Brown and N.D. Gilbert, Algebraic models of 3-types and automorphism structures for crossed modules, Proc. London Math. Soc. (3) 59 (1989), 51-73. Zbl0645.18007MR997251
- [6] R. Brown and M. Golasinski, A model structure for the homotopy category of crossed complexes, Cahiers Topologie Géom. Diff. Catégoriques30 (1989), 61-82. Zbl0679.55016MR1000831
- [7] R. Brown and P.J. Higgins, Tensor products and homotopies for ω-groupoids and crossed complexes, J. Pure Appl. Algebra47 (1987), 1-33. Zbl0621.55009
- [8] R. Brown and P.J. Higgins, The algebra of cubes, J. Pure Appl. Algebra21 (1981), 233-260. Zbl0468.55007MR617135
- [9] R. Brown and P.J. Higgins, Crossed complexes and chain complexes with operators, Math Proc. Camb. Phil. Soc.107 (1990), 33-57. Zbl0691.18003MR1021872
- [10] R. Brown and P.J. Higgins, The classifying space of a crossed complex, Math Proc. Camb. Phil. Soc.110 (1991), 95-120. Zbl0732.55007MR1104605
- [11] R. Brown and J.L. Loday, Van Kampen theorems for diagram of spaces, Topology26 (1987), 311-335. Zbl0622.55009MR899052
- [12] M. Bullejos and A.M. Cegarra, A 3-dimensional nonabelian cohomology with applications to homotopy classification of continuous maps, Canadian Journal of Mathematics, 43 (2) (1991), 265-296. Zbl0726.18009MR1113754
- [13] M. Bullejos, P. Carrasco and A.M. Cegarra, Cohomology with coefficients in symmetric cat-groups. An extension of Eilenberg-MacLane's classification theorem, Math. Proc. Camb. Phil. Soc.114 (1993), 163-189. Zbl0787.55007MR1219923
- [14] J.G. Cabello and A.R. Garzon, Closed model structures for algebraic models of n-types, J. Pure Appl. Algebra103 (1995), 287-302. Zbl0837.55014MR1357790
- [15] P. Carrasco and A.M. Cegarra, Group theoretic algebraic models for homotopy types, J. Pure Appl. Algebra75 (1991), 195-235. Zbl0742.55003MR1137837
- [16] P. Carrasco and A.M. Cegarra, Applications de la notion du Nerf d'une Gr-catégorie (tressée), C. R. Acad. Sci. Paris t. 321, Série I (1995), 395-398. Zbl0856.18005MR1351084
- [17] P. Carrasco and A.M. Cegarra, Extensions centrales de Gr-catégories par des Gr-catégories tressées, C. R. Acad. Sci. Paris t. 321, Série I (1995), 527-530. Zbl0856.18006MR1356547
- [18] D. Conduche, Modules croisés généralisés de longeur 2, J. Pure Appl. Algebra34 (1984), 155-178. Zbl0554.20014MR772056
- [19] G. Ellis, Crossed squares and combinatorial homotopy, Math. Z.214 (1993), 93-110. Zbl0789.55008MR1234600
- [20] A.R. Garzon and J.G. Miranda, Models for homotopy n-types in diagram categories, Applied Categorical Structures4, (1996), 1-14. Zbl0858.55009MR1406099
- [21] D. Guin-Walery and J.L. Loday, Obstructions a l'excision en K-theorie algébrique, L. N. in Math854Springer (1981), 179-216. Zbl0461.18007MR618305
- [22] J. Howie, Pullback functors and crossed complexes, Cah. Top. Géom. Diff. XX-3 (1979), 281-296. Zbl0429.18007MR557084
- [23] J. Huebschmann, Crossed n-fold extensions and cohomology, Comm. Math. Helv.55 (1980), 302-314. Zbl0443.18019MR576608
- [24] A. Joyal and R. Street, Braided tensor categories, Advances in Math. (1) 82 (1991), 20-78. Zbl0817.18007MR1250465
- [25] J.L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Algebra24 (1982), 179-202. Zbl0491.55004MR651845
- [26] S. M and J.H.C. Whitehead, On the 3-type of a complex, Proc. Nat. Acac. Sci. USA30 (1956), 41-48. Zbl0035.39001MR33519
- [27] J.G. Miranda, Estructuras de modelos y teoría de homotopía en categorías de grupos y grupoides simpliciales, Ph.D. thesis, University of Granada (1995).
- [28] I. Moerdijk and J. Svensson, Algebraic classification of equi-variant homotopy 2-types, I, J. Pure Appl. Algebra89, (1993), 187-216. Zbl0787.55008MR1239560
- [29] T. Porter, Abstract Homotopy theory. The interaction of category theory and homotopy theory, U. C. N. W. Maths Preprint 92.04 (1992). Zbl05508171MR1957710
- [30] D. Quillen, Homotopical Algebra, L.N. in Math.43, Springer (1967). Zbl0168.20903MR223432
- [31] D. Quillen, Rational homotopy theory, Annals of Math.90 (1969), 205-295. Zbl0191.53702MR258031
- [32] J.H.C. Whitehead, Combinatorial homotopy II, Bull. A.M.S.55 (1949), 453-496. Zbl0040.38801MR30760
- [33] J.H.C. Whitehead, Algebraic Homotopy Theory, Proc. Int. Congress of Mathematicians, Harvard2 (1950), 354-357. Zbl0049.24103MR45389
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.