Homotopy theory for (braided) cat-groups

Antonio R. Garzon; Jesus G. Miranda

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)

  • Volume: 38, Issue: 2, page 99-139
  • ISSN: 1245-530X

How to cite

top

Garzon, Antonio R., and Miranda, Jesus G.. "Homotopy theory for (braided) cat-groups." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.2 (1997): 99-139. <http://eudml.org/doc/91590>.

@article{Garzon1997,
author = {Garzon, Antonio R., Miranda, Jesus G.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {cat-group; internal category; crossed module; simplicial groups; quadratic modules; braiding; symmetry map; closed model category; sets of homotopy classes of maps; connected topological spaces},
language = {eng},
number = {2},
pages = {99-139},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Homotopy theory for (braided) cat-groups},
url = {http://eudml.org/doc/91590},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Garzon, Antonio R.
AU - Miranda, Jesus G.
TI - Homotopy theory for (braided) cat-groups
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 2
SP - 99
EP - 139
LA - eng
KW - cat-group; internal category; crossed module; simplicial groups; quadratic modules; braiding; symmetry map; closed model category; sets of homotopy classes of maps; connected topological spaces
UR - http://eudml.org/doc/91590
ER -

References

top
  1. [1] M.G. Barratt, Track groups II, Proc. London Math. Soc. (3) 5 (1955), 258-329. Zbl0065.16302MR73179
  2. [2] H.J. Baues, Combinatorial homotopy and 4-dimensional complexes, de Gruyter Expos. Math. vol. 2, 1991. Zbl0716.55001MR1096295
  3. [3] A.L. Blakers, On the relations between homotopy and homology groups, Ann. of Math. vol. 49 (1948), 428-461. Zbl0040.25701MR24132
  4. [4] R. Brown, Fibrations of groupoids, J. of Algebra15 (1970), 103-132. Zbl0194.02202MR271194
  5. [5] R. Brown and N.D. Gilbert, Algebraic models of 3-types and automorphism structures for crossed modules, Proc. London Math. Soc. (3) 59 (1989), 51-73. Zbl0645.18007MR997251
  6. [6] R. Brown and M. Golasinski, A model structure for the homotopy category of crossed complexes, Cahiers Topologie Géom. Diff. Catégoriques30 (1989), 61-82. Zbl0679.55016MR1000831
  7. [7] R. Brown and P.J. Higgins, Tensor products and homotopies for ω-groupoids and crossed complexes, J. Pure Appl. Algebra47 (1987), 1-33. Zbl0621.55009
  8. [8] R. Brown and P.J. Higgins, The algebra of cubes, J. Pure Appl. Algebra21 (1981), 233-260. Zbl0468.55007MR617135
  9. [9] R. Brown and P.J. Higgins, Crossed complexes and chain complexes with operators, Math Proc. Camb. Phil. Soc.107 (1990), 33-57. Zbl0691.18003MR1021872
  10. [10] R. Brown and P.J. Higgins, The classifying space of a crossed complex, Math Proc. Camb. Phil. Soc.110 (1991), 95-120. Zbl0732.55007MR1104605
  11. [11] R. Brown and J.L. Loday, Van Kampen theorems for diagram of spaces, Topology26 (1987), 311-335. Zbl0622.55009MR899052
  12. [12] M. Bullejos and A.M. Cegarra, A 3-dimensional nonabelian cohomology with applications to homotopy classification of continuous maps, Canadian Journal of Mathematics, 43 (2) (1991), 265-296. Zbl0726.18009MR1113754
  13. [13] M. Bullejos, P. Carrasco and A.M. Cegarra, Cohomology with coefficients in symmetric cat-groups. An extension of Eilenberg-MacLane's classification theorem, Math. Proc. Camb. Phil. Soc.114 (1993), 163-189. Zbl0787.55007MR1219923
  14. [14] J.G. Cabello and A.R. Garzon, Closed model structures for algebraic models of n-types, J. Pure Appl. Algebra103 (1995), 287-302. Zbl0837.55014MR1357790
  15. [15] P. Carrasco and A.M. Cegarra, Group theoretic algebraic models for homotopy types, J. Pure Appl. Algebra75 (1991), 195-235. Zbl0742.55003MR1137837
  16. [16] P. Carrasco and A.M. Cegarra, Applications de la notion du Nerf d'une Gr-catégorie (tressée), C. R. Acad. Sci. Paris t. 321, Série I (1995), 395-398. Zbl0856.18005MR1351084
  17. [17] P. Carrasco and A.M. Cegarra, Extensions centrales de Gr-catégories par des Gr-catégories tressées, C. R. Acad. Sci. Paris t. 321, Série I (1995), 527-530. Zbl0856.18006MR1356547
  18. [18] D. Conduche, Modules croisés généralisés de longeur 2, J. Pure Appl. Algebra34 (1984), 155-178. Zbl0554.20014MR772056
  19. [19] G. Ellis, Crossed squares and combinatorial homotopy, Math. Z.214 (1993), 93-110. Zbl0789.55008MR1234600
  20. [20] A.R. Garzon and J.G. Miranda, Models for homotopy n-types in diagram categories, Applied Categorical Structures4, (1996), 1-14. Zbl0858.55009MR1406099
  21. [21] D. Guin-Walery and J.L. Loday, Obstructions a l'excision en K-theorie algébrique, L. N. in Math854Springer (1981), 179-216. Zbl0461.18007MR618305
  22. [22] J. Howie, Pullback functors and crossed complexes, Cah. Top. Géom. Diff. XX-3 (1979), 281-296. Zbl0429.18007MR557084
  23. [23] J. Huebschmann, Crossed n-fold extensions and cohomology, Comm. Math. Helv.55 (1980), 302-314. Zbl0443.18019MR576608
  24. [24] A. Joyal and R. Street, Braided tensor categories, Advances in Math. (1) 82 (1991), 20-78. Zbl0817.18007MR1250465
  25. [25] J.L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Algebra24 (1982), 179-202. Zbl0491.55004MR651845
  26. [26] S. M and J.H.C. Whitehead, On the 3-type of a complex, Proc. Nat. Acac. Sci. USA30 (1956), 41-48. Zbl0035.39001MR33519
  27. [27] J.G. Miranda, Estructuras de modelos y teoría de homotopía en categorías de grupos y grupoides simpliciales, Ph.D. thesis, University of Granada (1995). 
  28. [28] I. Moerdijk and J. Svensson, Algebraic classification of equi-variant homotopy 2-types, I, J. Pure Appl. Algebra89, (1993), 187-216. Zbl0787.55008MR1239560
  29. [29] T. Porter, Abstract Homotopy theory. The interaction of category theory and homotopy theory, U. C. N. W. Maths Preprint 92.04 (1992). Zbl05508171MR1957710
  30. [30] D. Quillen, Homotopical Algebra, L.N. in Math.43, Springer (1967). Zbl0168.20903MR223432
  31. [31] D. Quillen, Rational homotopy theory, Annals of Math.90 (1969), 205-295. Zbl0191.53702MR258031
  32. [32] J.H.C. Whitehead, Combinatorial homotopy II, Bull. A.M.S.55 (1949), 453-496. Zbl0040.38801MR30760
  33. [33] J.H.C. Whitehead, Algebraic Homotopy Theory, Proc. Int. Congress of Mathematicians, Harvard2 (1950), 354-357. Zbl0049.24103MR45389

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.