Cat as a closed model category
R. W. Thomason (1980)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
R. W. Thomason (1980)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Timothy Porter (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Murray Heggie (1993)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Gaucher, Philippe (2006)
Theory and Applications of Categories [electronic only]
Similarity:
Murray Heggie (1992)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
C. Elvira-Donazar, L. J. Hernandez-Paricio (1995)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Murray Heggie (1992)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
J. García-Calcines, P. García-Díaz, S. Rodríguez-Machín (2006)
Open Mathematics
Similarity:
Taking cylinder objects, as defined in a model category, we consider a cylinder construction in a cofibration category, which provides a reformulation of relative homotopy in the sense of Baues. Although this cylinder is not a functor we show that it verifies a list of properties which are very closed to those of an I-category (or category with a natural cylinder functor). Considering these new properties, we also give an alternative description of Baues’ relative homotopy groupoids. ...