A Pfaffian-Hafnian analogue of Borchardt's identity.
Ishikawa, Masao, Kawamuko, Hiroyuki, Okada, Soichi (2005)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Ishikawa, Masao, Kawamuko, Hiroyuki, Okada, Soichi (2005)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Xin, Guoce (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Lowen, R., Verbeeck, C. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Puninagool, W., Leeratanavalee, S. (2007)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Zaslavski, Alexander J. (2004)
Abstract and Applied Analysis
Similarity:
Björner, Anders, Brenti, Francesco (1996)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Chatfield, J.A. (1978)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Boonpogkrong Varayu, Tuan-Seng Chew (2006)
Mathematica Bohemica
Similarity:
In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral exists if , and . In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.
Hozo, Iztok (1995)
The Electronic Journal of Combinatorics [electronic only]
Similarity: