Indivisibility of class numbers of global function fields
Allison M. Pacelli, Michael Rosen (2009)
Acta Arithmetica
Similarity:
Allison M. Pacelli, Michael Rosen (2009)
Acta Arithmetica
Similarity:
Jedrzej Śniatycki (2003)
Annales de l'Institut Fourier
Similarity:
Orbits of complete families of vector fields on a subcartesian space are shown to be smooth manifolds. This allows a description of the structure of the reduced phase space of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a global description of smooth geometric structures on a family of manifolds, which form a singular foliation of a subcartesian space, in terms of objects defined on the corresponding family of vector fields....
Przemyslaw Koprowski (2002)
Colloquium Mathematicae
Similarity:
We examine the conditions for two algebraic function fields over global fields to be Witt equivalent. We develop a criterion solving the problem which is analogous to the local-global principle for Witt equivalence of global fields obtained by R. Perlis, K. Szymiczek, P. E. Conner and R. Litherland [12]. Subsequently, we derive some immediate consequences of this result. In particular we show that Witt equivalence of algebraic function fields (that have rational places) over global fields...
Attila Pethő, Michael E. Pohst (2012)
Acta Arithmetica
Similarity:
F. Constantinescu, J. G. Taylor (1973)
Recherche Coopérative sur Programme n°25
Similarity:
Enrico Bombieri, Julia Mueller, Umberto Zannier (2001)
Acta Arithmetica
Similarity:
Shabbir, Ghulam, Amur, Khuda Bux (2006)
APPS. Applied Sciences
Similarity:
V. Sprindžuk (1974)
Acta Arithmetica
Similarity:
Grzegorz Łubczonok (1981)
Colloquium Mathematicae
Similarity:
Jeffrey L. Stuart (2016)
Czechoslovak Mathematical Journal
Similarity: