Orbits of families of vector fields on subcartesian spaces

Jedrzej Śniatycki[1]

  • [1] University of Calgary, Department of Mathematics and Statistics, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)

Annales de l'Institut Fourier (2003)

  • Volume: 53, Issue: 7, page 2257-2296
  • ISSN: 0373-0956

Abstract

top
Orbits of complete families of vector fields on a subcartesian space are shown to be smooth manifolds. This allows a description of the structure of the reduced phase space of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a global description of smooth geometric structures on a family of manifolds, which form a singular foliation of a subcartesian space, in terms of objects defined on the corresponding family of vector fields. Stratified spaces, Poisson spaces, and almost complex spaces are discussed as examples.

How to cite

top

Śniatycki, Jedrzej. "Orbits of families of vector fields on subcartesian spaces." Annales de l'Institut Fourier 53.7 (2003): 2257-2296. <http://eudml.org/doc/116099>.

@article{Śniatycki2003,
abstract = {Orbits of complete families of vector fields on a subcartesian space are shown to be smooth manifolds. This allows a description of the structure of the reduced phase space of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a global description of smooth geometric structures on a family of manifolds, which form a singular foliation of a subcartesian space, in terms of objects defined on the corresponding family of vector fields. Stratified spaces, Poisson spaces, and almost complex spaces are discussed as examples.},
affiliation = {University of Calgary, Department of Mathematics and Statistics, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)},
author = {Śniatycki, Jedrzej},
journal = {Annales de l'Institut Fourier},
keywords = {almost complex structure; differential spoace; Kähler space; Poisson reduction; singular reduction; stratified space; subcartesian space; differential space},
language = {eng},
number = {7},
pages = {2257-2296},
publisher = {Association des Annales de l'Institut Fourier},
title = {Orbits of families of vector fields on subcartesian spaces},
url = {http://eudml.org/doc/116099},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Śniatycki, Jedrzej
TI - Orbits of families of vector fields on subcartesian spaces
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 2257
EP - 2296
AB - Orbits of complete families of vector fields on a subcartesian space are shown to be smooth manifolds. This allows a description of the structure of the reduced phase space of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a global description of smooth geometric structures on a family of manifolds, which form a singular foliation of a subcartesian space, in terms of objects defined on the corresponding family of vector fields. Stratified spaces, Poisson spaces, and almost complex spaces are discussed as examples.
LA - eng
KW - almost complex structure; differential spoace; Kähler space; Poisson reduction; singular reduction; stratified space; subcartesian space; differential space
UR - http://eudml.org/doc/116099
ER -

References

top
  1. N. Aronszajn, Subcartesian and subriemannian spaces, Notices Amer. Math. Soc 14 (1967) 
  2. N. Aronszajn, P. Szeptycki, The theory of Bessel potentials. IV., Ann. Inst. Fourier (Grenoble) 25 (1975), 27-69 Zbl0304.31010MR435824
  3. N. Aronszajn, P. Szeptycki, Subcartesian spaces, J. Differential Geom 15 (1980), 393-416 Zbl0451.58006MR620895
  4. R. Cushman, L. Bates, Global aspects of classical integrable systems, (1997), Birkhäuser, Basel Zbl0882.58023MR1438060
  5. L. Bates, E. Lerman, Proper group actions and symplectic stratified spaces, Pacific J. Math 181 (1997), 201-229 Zbl0902.58008MR1486529
  6. E. Bierstone, Lifting isotopies from orbit spaces, Topology 14 (1975), 245-272 Zbl0317.57015MR375356
  7. E. Bierstone, The Structure of orbit spaces and the singularities of equivariant mappings, vol. 35 (1980), Instituto de Matemática Pura e Applicada, Rio de Janeiro Zbl0501.57001
  8. R. Cushman, J. {#x015A;}niatycki, Differential structure of orbit spaces, Canad. J. Math 53 (2001), 715-755 Zbl1102.53301MR1848504
  9. J.J. Duistermaat, J.A.C. Kolk, Lie groups, (1999), Springer Verlag, New York Zbl0955.22001MR1738431
  10. M. Goresky, R. MacPherson, Stratified Morse theory, (1988), Springer Verlag, New York Zbl0639.14012MR932724
  11. J. Huebschmann, Kähler spaces, nilpotent orbits, and singular reduction Zbl1070.53052
  12. P. Libermann, C.-M. Marle, Symplectic geometry and analytical mechanics, (1987), D. Reidel Publishing Company, Dordrecht Zbl0643.53002MR882548
  13. C.D. Marshall, Calculus on subcartesian spaces, J. Differential Geom 10 (1975), 551-573 Zbl0317.58007MR394742
  14. C.D. Marshall, The de Rham cohomology on subcartesian spaces, J. Differential Geom 10 (1975), 575-588 Zbl0319.58003MR394743
  15. A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. 65 (1957), 391-404 Zbl0079.16102MR88770
  16. M.J. Pflaum, Analytic and geometric study of study of stratified spaces, vol. 1768 (2001), Springer Verlag, Berlin Zbl0988.58003MR1869601
  17. G.W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-68 Zbl0297.57015MR370643
  18. R. Sikorski, Abstract covariant derivative, Colloq. Math 18 (1967), 251-272 Zbl0162.25101MR222799
  19. R. Sikorski, Differential modules, Colloq. Math 24 (1971), 45-79 Zbl0226.53004MR482794
  20. R. Sikorski, Wstȩp do Geometrii Różniczkowej, vol. 42 (1972), PWN, Warszawa Zbl0255.53001MR467544
  21. R. Sjamaar, E. Lerman, Stratified symplectic spaces and reduction, Ann. Math 134 (1991), 375-422 Zbl0759.58019MR1127479
  22. J. {#x015A;}niatycki, Almost Poisson structures and nonholonomic singular reduction, Rep. Math. Phys 48 (2001), 235-248 Zbl1015.53051
  23. J. {#x015A;}niatycki, Integral curves of derivations on locally semi-algebraic differential spaces, Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, May 24--27 (2002), 825-831, Wilmington, NC, USA Zbl1086.53100
  24. K. Spallek, Differenzierbare Räume, Math. Ann. 180 (1969), 269-296 Zbl0169.52901MR261035
  25. K. Spallek, Differential forms on differentiable spaces, Rend. Mat. (2) 6 (1971), 237-258 Zbl0221.58003MR304706
  26. P. Stefan, Acessible sets, orbits and foliations with singularities, Proc. London Math. Soc. 29 (1974), 699-713 Zbl0342.57015MR362395
  27. H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc 180 (1973), 171-188 Zbl0274.58002MR321133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.