Orbits of families of vector fields on subcartesian spaces
- [1] University of Calgary, Department of Mathematics and Statistics, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)
Annales de l'Institut Fourier (2003)
- Volume: 53, Issue: 7, page 2257-2296
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topŚniatycki, Jedrzej. "Orbits of families of vector fields on subcartesian spaces." Annales de l'Institut Fourier 53.7 (2003): 2257-2296. <http://eudml.org/doc/116099>.
@article{Śniatycki2003,
abstract = {Orbits of complete families of vector fields on a subcartesian space are shown to be
smooth manifolds. This allows a description of the structure of the reduced phase space
of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a
global description of smooth geometric structures on a family of manifolds, which form a
singular foliation of a subcartesian space, in terms of objects defined on the
corresponding family of vector fields. Stratified spaces, Poisson spaces, and almost
complex spaces are discussed as examples.},
affiliation = {University of Calgary, Department of Mathematics and Statistics, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)},
author = {Śniatycki, Jedrzej},
journal = {Annales de l'Institut Fourier},
keywords = {almost complex structure; differential spoace; Kähler space; Poisson reduction; singular reduction; stratified space; subcartesian space; differential space},
language = {eng},
number = {7},
pages = {2257-2296},
publisher = {Association des Annales de l'Institut Fourier},
title = {Orbits of families of vector fields on subcartesian spaces},
url = {http://eudml.org/doc/116099},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Śniatycki, Jedrzej
TI - Orbits of families of vector fields on subcartesian spaces
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 2257
EP - 2296
AB - Orbits of complete families of vector fields on a subcartesian space are shown to be
smooth manifolds. This allows a description of the structure of the reduced phase space
of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a
global description of smooth geometric structures on a family of manifolds, which form a
singular foliation of a subcartesian space, in terms of objects defined on the
corresponding family of vector fields. Stratified spaces, Poisson spaces, and almost
complex spaces are discussed as examples.
LA - eng
KW - almost complex structure; differential spoace; Kähler space; Poisson reduction; singular reduction; stratified space; subcartesian space; differential space
UR - http://eudml.org/doc/116099
ER -
References
top- N. Aronszajn, Subcartesian and subriemannian spaces, Notices Amer. Math. Soc 14 (1967)
- N. Aronszajn, P. Szeptycki, The theory of Bessel potentials. IV., Ann. Inst. Fourier (Grenoble) 25 (1975), 27-69 Zbl0304.31010MR435824
- N. Aronszajn, P. Szeptycki, Subcartesian spaces, J. Differential Geom 15 (1980), 393-416 Zbl0451.58006MR620895
- R. Cushman, L. Bates, Global aspects of classical integrable systems, (1997), Birkhäuser, Basel Zbl0882.58023MR1438060
- L. Bates, E. Lerman, Proper group actions and symplectic stratified spaces, Pacific J. Math 181 (1997), 201-229 Zbl0902.58008MR1486529
- E. Bierstone, Lifting isotopies from orbit spaces, Topology 14 (1975), 245-272 Zbl0317.57015MR375356
- E. Bierstone, The Structure of orbit spaces and the singularities of equivariant mappings, vol. 35 (1980), Instituto de Matemática Pura e Applicada, Rio de Janeiro Zbl0501.57001
- R. Cushman, J. {#x015A;}niatycki, Differential structure of orbit spaces, Canad. J. Math 53 (2001), 715-755 Zbl1102.53301MR1848504
- J.J. Duistermaat, J.A.C. Kolk, Lie groups, (1999), Springer Verlag, New York Zbl0955.22001MR1738431
- M. Goresky, R. MacPherson, Stratified Morse theory, (1988), Springer Verlag, New York Zbl0639.14012MR932724
- J. Huebschmann, Kähler spaces, nilpotent orbits, and singular reduction Zbl1070.53052
- P. Libermann, C.-M. Marle, Symplectic geometry and analytical mechanics, (1987), D. Reidel Publishing Company, Dordrecht Zbl0643.53002MR882548
- C.D. Marshall, Calculus on subcartesian spaces, J. Differential Geom 10 (1975), 551-573 Zbl0317.58007MR394742
- C.D. Marshall, The de Rham cohomology on subcartesian spaces, J. Differential Geom 10 (1975), 575-588 Zbl0319.58003MR394743
- A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. 65 (1957), 391-404 Zbl0079.16102MR88770
- M.J. Pflaum, Analytic and geometric study of study of stratified spaces, vol. 1768 (2001), Springer Verlag, Berlin Zbl0988.58003MR1869601
- G.W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-68 Zbl0297.57015MR370643
- R. Sikorski, Abstract covariant derivative, Colloq. Math 18 (1967), 251-272 Zbl0162.25101MR222799
- R. Sikorski, Differential modules, Colloq. Math 24 (1971), 45-79 Zbl0226.53004MR482794
- R. Sikorski, Wstȩp do Geometrii Różniczkowej, vol. 42 (1972), PWN, Warszawa Zbl0255.53001MR467544
- R. Sjamaar, E. Lerman, Stratified symplectic spaces and reduction, Ann. Math 134 (1991), 375-422 Zbl0759.58019MR1127479
- J. {#x015A;}niatycki, Almost Poisson structures and nonholonomic singular reduction, Rep. Math. Phys 48 (2001), 235-248 Zbl1015.53051
- J. {#x015A;}niatycki, Integral curves of derivations on locally semi-algebraic differential spaces, Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, May 24--27 (2002), 825-831, Wilmington, NC, USA Zbl1086.53100
- K. Spallek, Differenzierbare Räume, Math. Ann. 180 (1969), 269-296 Zbl0169.52901MR261035
- K. Spallek, Differential forms on differentiable spaces, Rend. Mat. (2) 6 (1971), 237-258 Zbl0221.58003MR304706
- P. Stefan, Acessible sets, orbits and foliations with singularities, Proc. London Math. Soc. 29 (1974), 699-713 Zbl0342.57015MR362395
- H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc 180 (1973), 171-188 Zbl0274.58002MR321133
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.