The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Calcul du nombre de classes d'un corps quadratique imaginaire ou réel, d'après Shanks, Williams, McCurley, A. K. Lenstra et Schnorr”

Sur le 2 -groupe de classes des corps multiquadratiques réels

Ali Mouhib, Abbas Movahhedi (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Soient p 1 , p 2 , . . . , p n des nombres premiers distincts - 1 ( m o d 4 ) , d : = p 1 p 2 p n et k n = Q ( p 1 , p 2 , . . . , p n ) . On peut approcher le 2 -rang du groupe de classes des corps k n en étudiant celui du corps k m ( d ) pour un entier m < n . Dans cet article, on traite le cas où m = 2 ou 3 . Comme application, on déduit que le rang du 2 -groupe de classes de k 4 est au moins égal à deux (on savait déjà grâce à un résultat de Fröhlich que le groupe de classes de k 4 est toujours d’ordre pair). On en déduit également la liste de tous les corps multiquadratiques k n ayant un 2 -groupe...