The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Unconditional convergence and the Vitali-Hahn-Saks theorem”

Vector series whose lacunary subseries converge

Lech Drewnowski, Iwo Labuda (2000)

Studia Mathematica

Similarity:

The area of research of this paper goes back to a 1930 result of H. Auerbach showing that a scalar series is (absolutely) convergent if all its zero-density subseries converge. A series n x n in a topological vector space X is called ℒ-convergent if each of its lacunary subseries k x n k (i.e. those with n k + 1 - n k ) converges. The space X is said to have the Lacunary Convergence Property, or LCP, if every ℒ-convergent series in X is convergent; in fact, it is then subseries convergent. The Zero-Density...