Vector series whose lacunary subseries converge
Studia Mathematica (2000)
- Volume: 138, Issue: 1, page 53-80
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Ag] R. P. Agnew, Subseries of series which are not absolutely convergent, Bull. Amer. Math. Soc. 53 (1947), 118-120. Zbl0037.04704
- [AB] C. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, 1978. Zbl0402.46005
- [Au] H. Auerbach, Über die Vorzeichenverteilung in unendlichen Reihen, Studia Math. 2 (1930), 228-230. Zbl56.0200.02
- [B] S. Banach, Théorie des opérations linéaires, Monografje matematyczne, Warszawa, 1932.
- [BDV] J. Batt, P. Dierolf and J. Vogt, Summable sequences and topological properties of , Arch. Math. (Basel) 28 (1977), 86-90. Zbl0362.46007
- [BP] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. Zbl0084.09805
- [DDD] P. Dierolf, S. Dierolf and L. Drewnowski, Remarks and examples concerning unordered Baire-like and ultrabarrelled spaces, Colloq. Math. 39 (1978), 109-116. Zbl0386.46008
- [D1] L. Drewnowski, Boundedness of vector measures with values in the spaces of Bochner measurable functions, Proc. Amer. Math. Soc. 91 (1984), 581-588. Zbl0601.28007
- [D2] L. Drewnowski, Topological vector groups and the Nevanlinna class, Funct. Approx. 22 (1994), 25-39.
- [DFP] L. Drewnowski, M. Florencio and P. J. Paúl, Some new classes of rings of sets with the Nikodym property, in: Functional Analysis (Trier, 1994), de Gruyter, Berlin, 1996, 143-152.
- [DL1] L. Drewnowski and I. Labuda, Lacunary convergence of series in , Proc. Amer. Math. Soc. 126 (1998), 1655-1659. Zbl0894.46020
- [DL2] L. Drewnowski and I. Labuda, The Orlicz-Pettis theorem for topological Riesz spaces, ibid., 823-825. Zbl0885.40002
- [DL3] L. Drewnowski and I. Labuda, Copies of and < ℓ∞> in topological Riesz spaces, Trans. Amer. Math. Soc. 350 (1998), 3555-3570. Zbl0903.46010
- [DL4] L. Drewnowski and I. Labuda, Topological vector spaces of Bochner measurable functions, submitted, 1999.
- [DL5] L. Drewnowski and I. Labuda, Subseries convergence of series in sequence spaces determined by some ideals in P(ℕ), in preparation.
- [EK] R. Estrada and R. P. Kanwal, Series that converge on sets of null density, Proc. Amer. Math. Soc. 97 (1986), 682-686. Zbl0592.40001
- [HJ] J. Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186. Zbl0265.60005
- [J] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001
- [Kw] S. Kwapień, On Banach spaces containing , Studia Math. 52 (1974), 187-188. Zbl0295.60003
- [L1] I. Labuda, Denumerability conditions and Orlicz-Pettis type theorems, Comment. Math. 18 (1974), 45-49. Zbl0297.28013
- [L2] I. Labuda, Submeasures and locally solid topologies on Riesz spaces, Math. Z. 195 (1987), 179-196. Zbl0601.46006
- [L3] I. Labuda, Spaces of measurable functions, Comment. Math., Tomus spec. in honorem Ladislai Orlicz II 1979, 217-249.
- [MO] W. Matuszewska and W. Orlicz, A note on modular spaces. IX, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 801-808. Zbl0164.43002
- [Mu] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.
- [NS] D. Noll and W. Stadler, Abstract sliding hump technique and characterization of barrelled spaces, Studia Math. 94 (1989), 103-120. Zbl0711.46004
- [O] W. Orlicz, On perfectly convergent series in certain function spaces, Prace Mat. 1 (1955), 393-414 (in Polish); English transl. in: W. Orlicz, Collected Papers, Part I, Polish Sci. Publ., Warszawa, 1988, 830-850. Zbl0066.35601
- [P] M. Paštéka, Convergence of series and submeasures on the set of positive integers, Math. Slovaca 40 (1990), 273-278. Zbl0755.40003
- [R] S. Rolewicz, Metric Linear Spaces, Polish Sci. Publ. & Reidel, Warszawa & Dordrecht, 1984. Zbl0226.46001
- [SF] J. J. Sember and A. R. Freedman, On summing sequences of 0's and 1's, Rocky Mountain J. Math. 11 (1981), 419-425. Zbl0496.40008
- [T] P. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976).
- [W] W. Wnuk, Representations of Orlicz lattices, ibid. 235 (1984). Zbl0566.46018