Notes on revealed classes
We continue the earlier research of [1]. In particular, we work out a class of regular interstices and show that selective types are realized in regular interstices. We also show that, contrary to the situation above definable elements, the stabilizer of an element inside M(0) whose type is selective need not be maximal.
We study automorphisms in the alternative set theory. We prove that fully revealed automorphisms are not closed under composition. We also construct some special automorphisms. We generalize the notion of revealment and Sd-class.
McAloon showed that if 𝓐 is a nonstandard model of IΔ₀, then some initial segment of 𝓐 is a nonstandard model of PA. Sommer and D'Aquino characterized, in terms of the Wainer functions, the elements that can belong to such an initial segment. The characterization used work of Ketonen and Solovay, and Paris. Here we give conditions on a model 𝓐 of IΔ₀ guaranteeing that there is an n-elementary initial segment that is a nonstandard model of PA. We also characterize the elements that can be included....