Page 1

Displaying 1 – 9 of 9

Showing per page

Polynomial cycles in certain local domains

T. Pezda (1994)

Acta Arithmetica

1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple x , x , . . . , x k - 1 of distinct elements of R is called a cycle of f if f ( x i ) = x i + 1 for i=0,1,...,k-2 and f ( x k - 1 ) = x . The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X]. It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number 7 7 · 2 N , depending only on the degree N of K. In this note we consider...

Precobalanced and cobalanced sequences of modules over domains

Anthony Giovannitti, H. Pat Goeters (2007)

Mathematica Bohemica

The class of pure submodules ( 𝒫 ) and torsion-free images ( ) of finite direct sums of submodules of the quotient field of an integral domain were first investigated by M. C. R. Butler for the ring of integers (1965). In this case 𝒫 = and short exact sequences of such modules are both prebalanced and precobalanced. This does not hold for integral domains in general. In this paper the notion of precobalanced sequences of modules is further investigated. It is shown that as in the case for abelian groups...

Currently displaying 1 – 9 of 9

Page 1