Gauge-equivalent deformations of linear ordinary differential operators with constant coefficients.
This paper deals with the notion of Gröbner δ-base for some rings of linear differential operators by adapting the works of W. Trinks, A. Assi, M. Insa and F. Pauer. We compare this notion with the one of Gröbner base for such rings. As an application we give some results on finiteness and on flatness of finitely generated left modules over these rings.