Page 1

Displaying 1 – 1 of 1

Showing per page

Solving quadratic equations over polynomial rings of characteristic two.

Jorgen Cherly, Luis Gallardo, Leonid Vaserstein, Ethel Wheland (1998)

Publicacions Matemàtiques

We are concerned with solving polynomial equations over rings. More precisely, given a commutative domain A with 1 and a polynomial equation antn + ...+ a0 = 0 with coefficients ai in A, our problem is to find its roots in A.We show that when A = B[x] is a polynomial ring, our problem can be reduced to solving a finite sequence of polynomial equations over B. As an application of this reduction, we obtain a finite algorithm for solving a polynomial equation over A when A is F[x1, ..., xN] or F(x1,...

Currently displaying 1 – 1 of 1

Page 1