Page 1

Displaying 1 – 7 of 7

Showing per page

Algebraic properties of decorated splitting obstruction groups

A. Cavicchioli, Y. V. Muranov, D. Repovš (2001)

Bollettino dell'Unione Matematica Italiana

In questo articolo si riassumono le definizioni e le principali proprietà dei gruppi di ostruzione con decorazione di tipo LS e LP. Si stabiliscono nuove relazioni fra questi gruppi e si descrivono le proprietà delle mappe naturali fra differenti gruppi con decorazione. Si costruiscono varie successioni spettrali, contenenti questi gruppi con decorazione, e si studiano la loro connessione con le successioni spettrali in K -teoria per certe estensioni quadratiche di antistrutture. Infine, si introduce...

On manifolds homotopy equivalent to the total spaces of S 7 -bundles over S 8

Ajay Raj, Tibor Macko (2024)

Archivum Mathematicum

We calculate the structure sets in the sense of surgery theory of total spaces of bundles over eight-dimensional sphere with fibre a seven-dimensional sphere, in which manifolds homotopy equivalent to the total spaces are organized, and we investigate the question, which of the elements in these structure sets can be realized as such bundles.

Surgery on pairs of closed manifolds

Alberto Cavicchioli, Yuri V. Muranov, Fulvia Spaggiari (2009)

Czechoslovak Mathematical Journal

To apply surgery theory to the problem of classifying pairs of closed manifolds, it is necessary to know the subgroup of the group L P * generated by those elements which are realized by normal maps to a pair of closed manifolds. This closely relates to the surgery problem for a closed manifold and to the computation of the assembly map. In this paper we completely determine such subgroups for many cases of Browder-Livesay pairs of closed manifolds. Moreover, very explicit results are obtained in the...

Currently displaying 1 – 7 of 7

Page 1