Page 1

Displaying 1 – 14 of 14

Showing per page

Phantom maps and purity in modular representation theory, I

D. Benson, G. Gnacadja (1999)

Fundamenta Mathematicae

Let k be a field and G a finite group. By analogy with the theory of phantom maps in topology, a map f : M → ℕ between kG-modules is said to be phantom if its restriction to every finitely generated submodule of M factors through a projective module. We investigate the relationships between the theory of phantom maps, the algebraic theory of purity, and Rickard's idempotent modules. In general, adding one to the pure global dimension of kG gives an upper bound for the number of phantoms we need...

P-nilpotent completion is not idempotent.

Geok Choo Tan (1997)

Publicacions Matemàtiques

Let P be an arbitrary set of primes. The P-nilpotent completion of a group G is defined by the group homomorphism η: G → GP' where GP' = inv lim(G/ΓiG)P. Here Γ2G is the commutator subgroup [G,G] and ΓiG the subgroup [G, Γi−1G] when i > 2. In this paper, we prove that P-nilpotent completion of an infinitely generated free group F does not induce an isomorphism on the first homology group with ZP coefficients. Hence, P-nilpotent completion is not idempotent. Another important consequence of...

Presentations of finite simple groups: a computational approach

Robert Guralnick, William M. Kantor, Martin Kassabov, Alexander Lubotzky (2011)

Journal of the European Mathematical Society

All finite simple groups of Lie type of rank n over a field of size q , with the possible exception of the Ree groups 2 G 2 ( q ) , have presentations with at most 49 relations and bit-length O ( 𝚕𝚘𝚐 n + 𝚕𝚘𝚐 q ) . Moreover, A n and S n have presentations with 3 generators; 7 relations and bit-length O ( 𝚕𝚘𝚐 n ) , while 𝚂𝙻 ( n , q ) has a presentation with 6 generators, 25 relations and bit-length O ( 𝚕𝚘𝚐 n + 𝚕𝚘𝚐 q ) .

Currently displaying 1 – 14 of 14

Page 1