Stabilizers of closed sets in the Urysohn space
Building on earlier work of Katětov, Uspenskij proved in [8] that the group of isometries of Urysohn's universal metric space 𝕌, endowed with the pointwise convergence topology, is a universal Polish group (i.e. it contains an isomorphic copy of any Polish group). Answering a question of Gao and Kechris, we prove here the following, more precise result: for any Polish group G, there exists a closed subset F of 𝕌 such that G is topologically isomorphic to the group of isometries of 𝕌 which map...