Generalized Calderón conditions and regular orbit spaces
The construction of generalized continuous wavelet transforms on locally compact abelian groups A from quasi-regular representations of a semidirect product group G = A ⋊ H acting on L²(A) requires the existence of a square-integrable function whose Plancherel transform satisfies a Calderón-type resolution of the identity. The question then arises under what conditions such square-integrable functions exist. The existing literature on this subject leaves a gap between sufficient and necessary criteria....