The Abramov-Rokhlin Entropy Addition Formula for Amenable Group Actions.
Bowen’s notion of sofic entropy is a powerful invariant for classifying probability-preserving actions of sofic groups. It can be defined in terms of the covering numbers of certain metric spaces associated to such an action, the ‘model spaces’. The metric geometry of these model spaces can exhibit various interesting features, some of which provide other invariants of the action. This paper explores an approximate connectedness property of the model spaces, and uses it give a new proof that certain...
For a class of one-dimensional holomorphic maps f of the Riemann sphere we prove that for a wide class of potentials φ the topological pressure is entirely determined by the values of φ on the repelling periodic points of f. This is a version of a classical result of Bowen for hyperbolic diffeomorphisms in the holomorphic non-uniformly hyperbolic setting.