Erratum to: "Painlevé null sets, dimension and compact embedding of weighted holomorphic spaces" (Studia Math. 213 (2012), 169-187)
In this paper we study spaces of holomorphic functions on the right half-plane R, that we denote by Mpω, whose growth conditions are given in terms of a translation invariant measure ω on the closed half-plane R. Such a measure has the form ω = ν ⊗ m, where m is the Lebesgue measure on R and ν is a regular Borel measure on [0, +∞). We call these spaces generalized Hardy–Bergman spaces on the half-plane R. We study in particular the case of ν purely atomic, with point masses on an arithmetic progression...
We obtain, in terms of associated weights, natural criteria for compact embedding of weighted Banach spaces of holomorphic functions on a wide class of domains in the complex plane. Our study is based on a complete characterization of finite-dimensional weighted spaces and canonical weights for them. In particular, we show that for a domain whose complement is not a Painlevé null set each nontrivial space of holomorphic functions with O-growth condition is infinite-dimensional.