Page 1

Displaying 1 – 10 of 10

Showing per page

Editorial

Jana Kopfová, Petra Nábělková, Dmitrii Rachinskii (2023)

Applications of Mathematics

Multiple spatial scales in engineering and atmospheric low Mach number flows

Rupert Klein (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The first part of this paper reviews the single time scale/multiple length scale low Mach number asymptotic analysis by Klein (1995, 2004). This theory explicitly reveals the interaction of small scale, quasi-incompressible variable density flows with long wave linear acoustic modes through baroclinic vorticity generation and asymptotic accumulation of large scale energy fluxes. The theory is motivated by examples from thermoacoustics and combustion. In an almost obvious way specializations of this...

Multiple spatial scales in engineering and atmospheric low Mach number flows

Rupert Klein (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The first part of this paper reviews the single time scale/multiple length scale low Mach number asymptotic analysis by Klein (1995, 2004). This theory explicitly reveals the interaction of small scale, quasi-incompressible variable density flows with long wave linear acoustic modes through baroclinic vorticity generation and asymptotic accumulation of large scale energy fluxes. The theory is motivated by examples from thermoacoustics and combustion. In an almost obvious way specializations of...

Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization

Houman Owhadi, Lei Zhang, Leonid Berlyand (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a new variational method for the numerical homogenization of divergence form elliptic, parabolic and hyperbolic equations with arbitrary rough (L∞) coefficients. Our method does not rely on concepts of ergodicity or scale-separation but on compactness properties of the solution space and a new variational approach to homogenization. The approximation space is generated by an interpolation basis (over scattered points forming a mesh of resolution H) minimizing the L2 norm of the source...

Currently displaying 1 – 10 of 10

Page 1