Geometric Fokker-Planck equations.
The problems of Gevrey hypoellipticity for a class of degenerated quasi-elliptic operators are studied by several authors (see [1]–[5]). In this paper we obtain the Gevrey hypoellipticity for a degenerated quasi-elliptic operator in , without any restriction on the characteristic polyhedron.
We consider a class of possibly degenerate second order elliptic operators on ℝⁿ. This class includes hypoelliptic Ornstein-Uhlenbeck type operators having an additional first order term with unbounded coefficients. We establish global Schauder estimates in Hölder spaces both for elliptic equations and for parabolic Cauchy problems involving . The Hölder spaces in question are defined with respect to a possibly non-Euclidean metric related to the operator . Schauder estimates are deduced by sharp...