Dispersing cocycles and mixing flows under functions
Let T be a measure-preserving and mixing action of a countable abelian group G on a probability space (X,,μ) and A a locally compact second countable abelian group. A cocycle c: G × X → A for T disperses if in measure for every map α: G → A. We prove that such a cocycle c does not disperse if and only if there exists a compact subgroup A₀ ⊂ A such that the composition θ ∘ c: G × X → A/A₀ of c with the quotient map θ: A → A/A₀ is trivial (i.e. cohomologous to a homomorphism η: G → A/A₀). This result...