The absolute continuity of the invariant measure of random iterated function systems with overlaps
We consider iterated function systems on the interval with random perturbation. Let be uniformly distributed in [1-ε,1+ ε] and let be contractions with fixpoints . We consider the iterated function system , where each of the maps is chosen with probability . It is shown that the invariant density is in L² and its L² norm does not grow faster than 1/√ε as ε vanishes. The proof relies on defining a piecewise hyperbolic dynamical system on the cube with an SRB-measure whose projection is the...