Difference equations on discrete polynomial hypergroups.
We investigate some problems of the following type: For which sets H is it true that if f is in a given class ℱ of periodic functions and the difference functions are in a given smaller class G for every h ∈ H then f itself must be in G? Denoting the class of counter-example sets by ℌ(ℱ,G), that is, , we try to characterize ℌ(ℱ,G) for some interesting classes of functions ℱ ⊃ G. We study classes of measurable functions on the circle group that are invariant for changes on null-sets (e.g. measurable...
In [11], the definitions of forward difference, backward difference, and central difference as difference operations for functions on R were formalized. However, the definitions of forward difference, backward difference, and central difference for functions on vector spaces over F have not been formalized. In cryptology, these definitions are very important in evaluating the security of cryptographic systems [3], [10]. Differential cryptanalysis [4] that undertakes a general purpose attack against...
We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp. 37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.
We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp.37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.
We give a set of sufficient conditions for the existence of differentiable solutions for a functional equation involving a series of iterates, using a method different from that of Baker and Zhang [Ann. Polon. Math. 73 (2000)].
2000 Mathematics Subject Classification: 42C05.We give an easy procedure for solving of the direct and the inverse spectral problems for the equation. Guseynov used a procedure of the Gelfand-Levitan type for the case N = 1. We use another procedure and this procedure is more easy and transparent.
We discuss a new formulation of the linear theory of discrete complex analysis on planar quad-graphs based on their medial graphs. It generalizes the theory on rhombic quad-graphs developed by Duffin, Mercat, Kenyon, Chelkak and Smirnov and follows the approach on general quad-graphs proposed by Mercat. We provide discrete counterparts of the most fundamental objects in complex analysis such as holomorphic functions, differential forms, derivatives, and the Laplacian. Also, we discuss discrete versions...
Let be a flat surface of genus with cone type singularities. Given a bipartite graph isoradially embedded in , we define discrete analogs of the Dirac operators on . These discrete objects are then shown to converge to the continuous ones, in some appropriate sense. Finally, we obtain necessary and sufficient conditions on the pair for these discrete Dirac operators to be Kasteleyn matrices of the graph . As a consequence, if these conditions are met, the partition function of the dimer...